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The Backflow-Cell Model for Continuous
Two-Phase Nonlinear Mass-Transfer Operations
Including Nonlinear Axial Holdup and Mixing Effects

C. V. MCSWAIN and L. D. DURBIN
DEPARTMENT OF CHEMICAL ENGINEERING,
TEXAS A & M UNIVERSITY,

COLLEGE STATION, TEXAS

Summary

The backflow-cell model is applied to countercurrent two-phase flow
processes with exchange of a single solute. The effects of nonuniform axial
holdup of the phases and nonlinear equilibrium are considered. Efficient
matrix methods of solving the model equations for the array of cell concen-
trations in each phase are developed. These profiles are compared to those
of the diffusion model for some linear cases, and methods of smoothing
them are discussed.

Methods of determining the effect of imperfect axial mixing on
the solute concentration profile and efficiency of continuous two-
phase operations have been based mainly upon the diffusion model
(1-6). Miyauchi and Vermeulen (1,5) and Sleicher (4) obtained
solutions when the dispersion coefficient and volumetric fraction
(holdup) of phases do not vary with axial position along a process
with inlet and withdrawal points at the ends. Wilburn (6) derived
the basic differential equations of a more general type of operation
with inlet feed points between the outlets at the ends and with
nonuniform distribution of the phases. These conditions are typical
of extractors such as packed, spray, or pulse columns. However,
solutions (6) are given only for the case of uniform holdup. The
presence of the stagnant volumes at the ends of the extractor has
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a great effect on the solute concentration profile and significantly
increases the efficiency of the operation.

Miyauchi and Vermeulen (7) applied the discrete backflow-cell
model] to continuous two-phase flow operations. They gave the
basic difference equations for this model with uniform mixing and
volumetric fraction of phases and with inlets and outlets at the
ends. They derived certain criteria for comparison with the con-
tinuous-diffusion model, although they did not indicate solutions
for the model. However, the solutions of the difference equations
are given by Sleicher (8) for an extraction train of mixer-settlers
with entrainment. These apply for the case with uniform back-
mixing and holdup and a linear equilibrium relationship.

The backflow-cell model of the more general type of operation
with side inlets is shown schematically by Fig. 1. Finite-difference
solutions for uniform mixing and holdup in a configuration of this
type may be obtained in a manner analogous to that given by Wil-
burn (6) for the continuous-diffusion case. As each cell corresponds
to an increment of length along the extractor, a sufficiently large
number of cells would be required to approximate the diffusion
model. Invariably, digital computation would be employed. If this
is the case, matrix algebra may be used directly with the added
advantage that conditions of nonuniform axial mixing and holdup
can easily be included. Also, iterative matrix methods allow cases
with nonlinear equilibrium relationships to be solved.

The purpose of this work is to describe useful and efficient
matrix methods of solving for the solute concentration profile in a
two-phase countercurrent extractor with side inlets. The equations
for the backflow-cell model are given for nonuniform axial mixing,
nonuniform axial holdup, and nonlinear equilibrium between
phases. Iterative techniques of solving the nonlinear set of equa-
tions which result from a nonlinear (quadratic) equilibrium rela-
tionship are discussed and compared with respect to speed of
convergence and utility. For uniform and linear conditions, com-
parisons are made with the results of the diffusion model. The
convergence of the cell model with increasing number of cells
to the continuous model is investigated. Methods of smoothing
the staircase type of profile of cell concentrations are studied.
The effects of nonuniform holdup and curvature of the equilibrium
curve are indicated for a typical system.
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BACKFLOW-CELL MODEL

The backflow-cell model of a two-phase countercurrent opera-
tion with side inlets is shown schematically by Fig. 1. The model
consists of N cells or stages which are further divided into dis-
persed X (rich) and continuous Y (lean) phase holdups with an
interphase mass (solute) transfer vector between them. Between
each individual pair of X- or Y-phase cells there is a recirculation
flow of that phase. The average net volumetric flows of the X and
Y phases are denoted by F, and F,, respectively. It is assumed
that the solvent and raffinate are immiscible so that F, and F, do
not change from stage to stage. The directions of these flows are
countercurrent to each other, as indicated in Fig. 1. Although the
countercurrent operation is considered here, the analysis can
readily be applied to cocurrent systems in the same manner. Al-
though Fig. 1 does not indicate this, the backflow rate from the kth
cell is denoted by frx and f, . for the X and Y phases, respectively.
Conditions of nonuniform axial mixing can be accounted for by
varying these individual backflow rates from cell to cell along the
axis of the system. The X-phase feed with solute concentration
¢} is introduced to the mth cell, and the Y-phase feed with solute
concentration ¢Y is introduced to the nth cell. Each cell is assumed
to be perfectly mixed. Coalescence and redispersion of the dis-
persed phase are so rapid that the solute concentration is uniform
throughout the cell. It is not necessary to stipulate that the dis-
persed droplets be separated into a homogeneous phase before
entering the next cell.

Model Equations

A material balance for the solute may be made about each cell
of the X and Y phases. The system studied here assumes steady-
state operation with constant input flows and inlet solute concen-
trations for each phase. Typical solute material-balance equations
for the kth cell in the midsection may be written

(Fr +f.l',k)c.l‘.k—1 - (FJ‘ +fr,k +f.r,k+l)c.r.k +fr,k+lcm,k+l —qr= 0
(F, +fy,k)Cy,k+1 —(Fy +fu,k +fu,k—1)0y.k +fy.k—10y,k—1 +qr= 0

(1)
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The equations are of the same form in the end sections except
that F,=0fork<mand F,=0for k > n.

The form of the mass-transfer vector is based upon the X phase
resistance and interfacial area a; of the dispersed X phase in the
total combined volume V. of the kth cell. Thus

qr = kozVi (€2 — CFx) 2)
A quadratic form of the equilibrium line in the form
¢k =q' +mec,+ bel (3)

will be used here. Other forms of the equilibrium line may be used
with techniques that are discussed.

The material-balance equations may be put in dimensionless
form by dividing through by F.c} and defining concentration
ratios as C, = ¢,/c%, C, = ¢,/c, and C§ = c}/c%. More general dimen-
sionless concentrations may be used in the form

_C,—0 _ mC, o mCY
X 1-0 Y——I_Q Y =) 4)

These are related to the generalized concentration variables X'
and Y’', given by Miyauchi and Vermeulen (7) as

CX=Y
G

Y-y

X Ye1-v 5)

For the case of linear equilibrium studied by them, it was not
necessary to specify Y°, or it could be taken to be zero. For the
nonlinear case treated here, the dimensionless curvature x of the
equilibrium line is specified. In this case Y° must be specified, as
it affects the results.

The equations which apply to the end cells and those at the
feed points for the X and Y phases require special consideration.
Here the zeroth, mth, nth, and (N + 1)th cells are assumed to be of
negligible volume, so mass transfer does not occur. The solute
material-balance equations for the three regions may be written
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for (1 < k < N; k # m or n) in the form

—BraXo+ BenX, =0
~(1+B,0Ye—(1+ Bua)Yi=0
BarnXm—1 — 1+ Brm t+ B.r,mH)Xm + Bem+1 X =—1
By,m—lYm—l - (1 + Bu.m + :By,m—l)Ym + (1 + By,m)YmH =0
(VJ' + B.r,l\')XI\'~l - (3).1‘ + B.r,k + B.r,k+1 + ak)Xk
+ (1 + XYYy + Brai i Xis: =0 6)

By.l\‘AIYk—I - (pu + ﬁy.k + Bu‘k—l + )\ak + )\akXYk)Yk
+ Ay X + (py + Bui)Yier1 =0
(1 + B.r,n)Xn—l - (l + BJ‘,N + B.I'JH-!)YH + BI,n+1Xn+l =0

Byn-1Yu—1 = (1 + By + Bun-1)Yn + BynYnsr =—Y°

—(1+ Bewi)Xysr + (1 + Brws )Xy =0
~BunYy+1 + Bua¥y=0

where p, =0, 1, 1 and p,= 1, 1, 0 in regions I, II, and III, re-
spectively.

A schematic representation of the countercurrent system with
side inlets and uniform mixing in each section is given by Fig. 2.
A nodal diagram for the backflow-cell model is also shown. It
should be noted that the boundary conditions (6) for the diffusion
model have their counterparts in the equations for the end and
feed input cells. The conditions at a feed input for the diffusion
model assume uniform injection across the plane perpendicular

FIG. 2. (Upper): countercurrent system with side inlets. (Lower): nodal
diagram of backflow-cell model.
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to the axial dimension. This corresponds to a cell of zero holdup.
However, in actual columns a mixing zone at the point of feed
input would be evident. By assigning finite volumes to the mth and
nth cells, the backflow-cell model can be made to more nearly
simulate this situation.

VARIABLE AXIAL CONDITIONS

The backflow-cell model equations are written to include cases
with mixing conditions and/or volumetric fraction of each phase
varying with axial position.

The condition of variable holdup or volumetric fraction can be
included by varying the relative volumes, V., and V,,, respec-
tively, for the X and Y phases in each cell. This affects the inter-
facial area of the dispersed X phase in the total volume element
Vi This may be expressed

- _ V.
A = A€ = a ka (7)

where a is the interfacial area for an average €, over the entire
system. The variable g, is included in the mass-transfer vector
g for each cell and is reflected in the specification of the array of
transfer constants a, for 1 < k < N.

Variable backmixing conditions are accounted for by variations
in B, and B, with respect to cell number. To determine the effect
of variable diffusivity E; and volumetric fraction ¢ upon the manner
in which B and « vary along the system, central difference approxi-
mations to the diffusion-model equation are developed. The Dam-
kohler (9) type of equation for transfer from the ith phase as given
by Wilburn (6) is used as the starting point. Thus for unit cross-
sectional area,

—div(—Eje; grad ¢;) —div(uec)) —g=0 (8)

Now, E; and ¢ are allowed to vary with axial dimension z, and are
grouped together in the first term as E; = Eje;. However, the bulk
volumetric flow rate per unit cross-sectional area of the system is
assumed to be invariant along the axis for each phase. Thus the
term use; = F;/A remains constant, For the end section, where there
is no net flow F;, the middle term is nonexistent.

Equation (8) may be placed in dimensionless variables C; =
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¢;/cd so that

NPe'E)Ci (i aNpe,>aC

9Z? 9z )9z ~ 1T (9)
where p; is unity with and zero without net flow and

gi= 22 (G, — C2) (10
Also, p, is positive for X phase flow and negative for countercur-
rent Y phase flow. The central difference approximation to this
equation at Z = kh from Z =0 in a region R of total length Z; which
is divided into N, increments of lengths hy = AZ; may be written
in the form

Pi_, M L
(Zi hl)c““ (2N53-f-k/hR)Ci.k+(—7§;—%)C,,k+,+qk=0 (11)

with
211,i = Npdik+1 + 2Npaik — Npeik—1
(12)
213,i= Npehin—1 + 2Npelik — Ntk

The correspondence with the cell-model equation (1) for region R
is realized when the B’s are specified as follows:

X phase: (p;+ Bzx) = (&"*' ﬂﬁ) Brwesr = (ﬁh—f p;)

Y phase: B4 = (:flh_a &) (pu+ o) =(nif—,'f+%¥) (13)

At the feed inlet points differences between concentrations in
adjacent cells are required in the boundary conditions. Conse-
quently, ambiguous definitions of 8’s at these points result. How-
ever, the specification of interior 8’s is used to maintain over-all
flow balance.

REGIONS WITH UNIFORM MIXING

With a constant Peclet number for a phase in any region R, a
relative measure of backmixing in this phase is defined by its
“phi” number, ¢, or ¢,z In this case the central difference
approximation to the diffusion-model equation agrees with the
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backflow-cell model when Npe, = ¢.r and Np,., = ¢, for that
region R. For the extractor system with end sections as shown by
Fig. 2 and with constant Peclet numbers specified for each section,
the definition of the 8’s takes the form:

Region R =1, II, or III:

Brs= Neeah)i' =55 Buu= Weesh)i’ =B (19)

In order to have the flow balance for each cell, these conditions
must apply at the feed input points, the mth and nth cells.

If straightforward finite-difference approximations to the diffu-
sion model are made, then central differences of the second-order
equation may be used at the interior points and are of the same form
as the cell-model equations with the 8’s set by Eq. (14). However,
at the feed input points and at the ends, the spacewise concentra-
tion derivatives in the boundary conditions (6) are approximated
by differences between values at adjacent points. This corresponds
to concentration differences between adjacent cells. From this
viewpoint the input boundary conditions for the difference equa-
tions are in the same form as the cell-model equations for the
mth and nth cells, except that the 8’s are defined as follows:

X-phase input: BI m = (hNPe .r)l By m—1 " (hNPe y)
B.r m+1 T (hNPe 1‘) 1l By m = (hNPe y)_l -

Y’Phase inPUti B.r n= (hNPe y)]—l1 - 1 By n—1 = (hNPe y)ll
Bzmi1 = (hNpe )il By.a = (hNpe,,)ui!

Several cases which result in variable 8’s and «’s must be recog-
nized. These include (a) constant €, and variable E; and (b) constant
E; and variable €,. Specifications of the a’s and B’s are made by
Egs. (7) and (13) for the particular phase and section. Once the
arrays of 8’s and o’s have been specified, the methods of solution
presented later are applicable to any of the cases. The third case
with variable holdup €, and constant E is the one considered here.
For this case the 8’s remain constant from cell to cell and the a’s
vary as €, varies with position. This implies that E/ varies in pro-
portion to the velocity at a point, u; = Fi/Ae;, so that the product
E; = ¢E| remains constant. The variation of E; with u; must be
known for the particular type of system and operating conditions

(15)
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under study before the array of B/s can be specified. However,
experimental determinations (10) of eddy diffusivities for liquids
in packed beds indicate that the Peclet number remains fairly
constant over a wide range of flow rates. Thus the assumption of
the diffusivity Ej varying in proportion to the velocity w; is justified
for a preliminary investigation.

Experimental determinations of the manner in which the volu-
metric fractions or holdups of the phases vary with position have
not been made. As noted by Wilburn (6), efficient operation may
be near flooding so that the dispersed phase piles up in the section
about its point of input. An arbitrary functional form of the dis-
persed-phase fractional holdup e, is employed here to describe
this situation. This equation is

€ = aZ§ exp (—bZ,) (16)

and is such that €, = 0 at the Y-phase outlet end. The constants q,
b, and ¢ were determined by an iterative digital search procedure
for specified values of the peak height e, its position, and an aver-
age &, for the entire system. Representative curves were generated
for the system with end sections, each of which is 10% of the mid-
section. Each curve was specified with its peak at the X-phase
inlet point and with a total area underneath them of one half (or
€, =1), as determined by trapezoidal integration with 481 points
over the entire length of the system. For this case, the values of
the constants g, b, and ¢ are given in Table 1 for different peak
heights.

TABLE 1

Holdup Distribution Function Parameters
(Peak at X-phase inlet; each end section with 10% of volume of midsection)

Peak Calc.
height, €, area® a b ¢

0.55 0.5004 0.6050 0.3281 0.02734
0.60 0.4997 0.7260 0.6563 0.05469
0.70 0.4994 1.0155 1.2813 0.1068
0.80 0.5004 1.3790 1.8750 0.1562
0.90 0.5005 1.8433 2.4688 0.2057
0.95 0.4991 2.1306 2.7813 0.2318

“ Trapezoidal integration of 481 points over range —0.1 < Z < 1.1.
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METHODS OF SOLUTION

The generalized set of equations (6) constitutes the mathe-
matical description of the backflow-cell model for the conditions
noted. Efficient methods of solving these equations are next
considered. Solutions were obtained with the University’s digital
computer.

The zeroth and (N + 1)th cell equations can be absorbed into
those for the first and Nth cells, respectively. The cell equations
for the X and Y phases are written alternately, beginning with the
first through the Nth cells. Each equation is written with alternating
X and Y terms. The set of 2N equations can be written as a quidiago-
nal matrix system in the configuration

-

Cri et €2 X, Tza
by,l Cya dy,l €ya Y, Ty
Ay b.z',z Cr2 d.r.z €xr2 X2 Te2

Ak bx,k Cr.k dx,k €r.k 1

b d Y T (17)

Ay Oy Cye Ay Cy.ie k vk

Az N bx,lv Cx.N dx,N )YcN TrN

T
Ay.N by,N | N‘ \ y’N‘
or in symbolic form as

AU=R (18)

The elements of the quidiagonal coefficient matrix A are defined
for (1 < k < N) as follows:

Qe = (Pr + Bz.r) Ay = Byk—1
b.l',k =0 by,k = }\ak
Crk= _(Px + Bok T Brarr T o) Cyr = [Py + Bk + Bus-1
+ Aoyl + xyw)]  (19)
dps= ox(l + ka) dyx=0
€zk™ Bt Cyk = (Py + Bu.x)
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The exceptions to these occur at the end and feed inlet cells,
where a,,=b,,=a,, =€,y = dy,y=e,5=0, and with zero values
for Bz, in Cz,15 Buo IN Cya; Bryer IN Corys By IN Cyyi A N C and
¢ym; and @, in ¢, and ¢, ,.

LINEAR EQUILIBRIUM

When x = 0, the equations describe the system with a linear
equilibrium relationship. In this case the elements of the constant
column vector R are defined for1 <= k< N as

e =1y =0 but with r,,=—1 and r,,=-—Y° (20)

The main diagonal of the quidiagonal coefficient matrix is domi-
nant with absolute value greater than that of any off-diagonal
element. Thus the solution of the matrix equation (17) can be
carried out efficiently by a Gaussian elimination procedure (11).
Recursive relationships for this scheme are given by Conte and
Dames (12), and these were coded in double precision arithmetic
(16 digits) for the digital method of solution.

The combined XY matrix method outlined above proved to be
the simplest and most direct method of solution as well as the best
as far as accuracy and roundoff are concerned. For each solution
an over-all material balance indicates the degree of confidence
to be placed on the results. Solutions were obtained by this direct
method to very severe and difficult cases, e.g., a large number of
cells with large B's and small o’s.

If the X and Y equations are written separately, two simultaneous
tridiagonal matrix systems result, in the form

AX+B,Y=D,
AY+BX=D,

@n

where A, and A, are tridiagonal coeflicient matrices, B, and B,
are diagonal interaction matrices, and D, and D, are column vec-
tors of input constants. The elements of the matrices are apparent
from the set of equations (6). The first equation may be solved for
Y = col(Y,, Y,, . . ., Yy) and substituted into the seconq equation
to yield a quidiagonal system of N equations in terms of X = col(X;,
X, . . ., Xy). This may be solved to obtain the X’s as before.
These are substituted back into the first equation which may be
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solved for the Y’s. Difficulties were experienced with this method
for a large value of N, large B’s and small ’s. With uniform holdup
for each cell, ax = N,,/N, so that values of a; can become quite
small. In the simultaneous method of solution, it is necessary to
divide by these a’s and difficulties are to be expected. Also, the
condition of the quidiagonal matrix for the X equations is not known
until it is calculated. Conditions such as two or more dominant
diagonals may develop which make the Gaussian elimination
procedure ineffective.

It should also be noted that if material-balance envelopes en-
close the X outlet end and cut between each pair of cells, then
after the Y’s are eliminated, a set of difference equations in the X’s
results. Each equation is a locally third-order difference with de-
pendence upon the outlet (Nth cell) conditions. For uniform and
linear conditions, the classical solution for the case with inlets and
outlets at the ends of the system is the sum of particular and
complementary solutions specified by the three characteristic.
roots and the boundary conditions. This is the form obtained by
Sleicher (8). The matrix system for this case involves a quatra-
diagonal coefficient matrix with the last (Nth) column filled. Un-
fortunately, two dominant diagonals occur in the coefficient
matrix and difficulties with the Gaussian elimination method of
solution were experienced.

Linear Results

Solutions were obtained for the four different system configura-
tions given by Wilburn (6) which are referred to as type I, II, III,
and IV with two, one X inlet, one Y inlet, and no end sections,
respectively. Analytical solutions of the diffusion model for the
type IV system are given by Miyauchi and Vermeulen (5). These
were programmed so that comparisons could be made with the
cell model. For cases with end sections, comparisons are made
with the profiles given by Wilburn. In particular, one case consist-
ing of a column with two end sections each of which is 10% of the
midsection, with Peclet number Np, =8 in all sections, with N,,.=4,
and with A = 0.5 will be referred to as case I here. Also for identifi-
cation purposes, case II refers to a type IV (Miyauchi and Ver-
meulen) system with the same parameters.

Some typical profiles for case I are shown in Figs. 3 and 4. The
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FIG. 3. Typical X-phase concentration profiles for variations of case 1.

(A) continuous; (B) 2-20-2 cells; 20-200-20 cells with (C) variable holdup,

&= 0.9, €, = 0.5; or with quadratic equilibrium, Y*=0.0; (D) x = 5; and
(E) x=—5.

A curves are the X and Y profiles for the continuous-diffusion model
as given by Wilburn. The B or stair-step curves show the X and Y
profile in the backflow-cell model of 24 cells with 20 in the middle
and 2 in each end section and with uniform values of 8, and 8,
set by ¢, = ¢, = 8. Average cell values are indicated. These are
determined by averaging the concentrations of adjacent cells, as

X = 3X, + $Xps Yi-y = 4Yoy + 3, (22)

An average at the point of feed input or cell of zero holdup was
obtained by averaging the three values which occur here; for
example, at the X-phase input or mth cell,

2Xm = '%Xm— 1+ Xm + %XnH—l (23)
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FIG. 4. Typical Y-phase concentration profiles for variations of case L. (A)

continuous; (B) 2-20-2 cells; 20-200-20 cells with (C) variable holdup,

€y = 0.9, €, = 0.5; or with quadratic equilibrium, Y*= 0.0, (D) x = 5; and
(E) x=—5.

As noted for the case of 24 cells, the average cell values agree very
well with the continuous profile.

To show the effects of variable holdup, the C profiles are shown
for case I with a 20-200-20 cell configuration for an over-all or aver-
age holdup of  but with a distribution such that the peak height
€z = 0.9 at the X-phase input point. The X and Y profiles drop
below those of the uniform holdup case at the X inlet end, but the
X-phase curve goes above that of the previous case at its outlet
end. A number of profiles were calculated for case I with different
peak heights. The concentration values at the ends are plotted
against peak height in Fig. 5. Thus the efficiency of the operation
is reduced as the X phase piles up in the raffinate-disengaging
section with total X and Y holdups remaining the same.
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FIG. 5. Variation of outlet conditions with peak height €, of the X-phase
holdup distribution. Case I with 20-200-20 backflow cells.

XORY

Nonlinear Equilibrium

Two methods of solution were employed for cases with nonlinear
equilibria. These are (a) the direct and (b) the Newton-Raphson
iterative methods. The nonlinear case considered here is that of
a quadratic equilibrium line. The methods are applicable to higher-
order and other forms of this relationship. Thus we consider the
set of equations (6) for the backflow-cell model with given x and Y°.

In the direct iteration process, solutions {X,} and {Y,} are first
obtained for the linear case with x = 0. These are used as the
assumed starting trial profile, {X,} and {Y,}. The assumed values
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of Y, are substituted as y, = Y, in the ¢, and d,, coeflicients for
the set of equations (19). Next, new values of X, and Y, are calcu-
lated from the quidiagonal matrix system, Eq. (18). These become
the new assumed profiles, {X;} and {Y,}, and the process is re-
peated until convergence is obtained. Convergence to the solution
was considered to have occurred when the absolute value of the
difference A, between the right and left sides of each equation in
the system was less than 1075, Starting with the linear profile for
case I, the direct iteration method converged within 4 to 12 itera-
tions with the number increasing as [x| increased.

With the Newton-Raphson iteration scheme, the functions of
solute concentrations, f(X,) or f(Y,), are expanded to first order
in a Taylor’s series about the value of the function at a previously
assumed or determined estimate, X, or Y;. For the quadratic system
these functions include:

Xk = Xk + AXk Yk = Yk + AYk Y}zf = Yk -+ ZYkAYk (24)

These are substituted into the solute material-balance equations
(6), and the linearized equations are arranged as a quidiagonal
matrix system in the form of Eq. (18). However, in this case U=
col(AX,, AY, AX,, . ., 6 AXy AYy), so a solution in terms of the
deviation vectors {AX;} and {AY,} is obtained. The elements of
the quidiagonal coefficient matrix A are as given by the set of
equations (19) with y, = 2Y,. The elements of the constant column
vector R now include terms in the assumed known estimates,
{X,} and {Y,}. The elements alternate as shown below for the kth
cell in the general form:

T = Ton— (a.r.kxk—l + ba‘.kYk—l + Cz.ka + d.r.k? + ez.kxkﬂ)
) (25)
Tyn = Tou — (@i Yros + by Xy + o 'Rs AysXis1 + eyiYirr)

with due allowance for the end conditions and with y, =Y in the
coefficient terms. Here, the previous input elements are noted as
r2.x = Ty. = 0 except that 12, =—1 and rJ,, = —Y°.

The method of solution with the Newton- -Raphson procedure
involves assuming initial concentration profiles {X,} and {Y,},
substituting these into the matrix equation (18), and solving this
for the deviation profiles {AX,} and {AY;}, which are added to
the assumed estimates according to Eq. (24) to give new estimates
of the concentrations {X;} and {Y,}. These new estimates become
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the new assumed profiles and the process is repeated until converg-
ence is obtained. The starting profiles were obtained as the linear
solution with x = 0. Again the iteration process was stopped when
the absolute deviation A, between the sides of each material-
balance equation was less than 107, With the quadratic equi-
librium relation, the Newton-Raphson method did not fail to con-
verge. It usually required 3 to 4 iterations for convergence to be
obtained after starting with the linear profile.

Nonlinear Results

Solution profiles were generated for case I with a 20-200-20 cell
configuration with Y° = 0 and for various values of the curvature
x- Profiles are shown as the D and E curves on Figs. 3 and 4 for
x's of +5 and —5, respectively. These profiles deviate markedly
from those of the linear case. The degrees of variation in end-cell
conditions with curvature are indicated by Fig. 6. As the curvature
x of the equilibrium relation decreases and goes negative, the
efficiency of the operation is enhanced.

1O T T l T T
08 -
XO
06} _
>
& Yo
< 04f -
XN _J
02 _/—YN

CURVATURE, X

FIG. 6. Variation of outlet conditions with the curvature x of a quadratic
equilibrium line. Case I with 20-200-20 backflow cells and Y* = 0.0.
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The Effect of Cell Size

At interior points away from the inlet and outlet boundaries,
the backflow-cell model is a central difference approximation to
the diffusion-model equations when the B’s are set according to
Eq. (15). The load difference approximation is valid to order h*
or O(h?). Baldwin and Durbin (13) showed that the outlet concentra-
tion from the backflow-cell model of an axially mixed first-order
reactor converged to that of the diffusion model as O(h?) or O(N72).
Internal cell concentrations converged only as O(h), whereas
average cell concentrations converged as O(h?). Similar results
were obtained for the extraction system with inlet and outlets
on the ends. The results are shown in Fig. 7. Here the deviations
Ay between the cell and continuous profiles at different points are
plotted against the total number N of cells in the system. For case
I1, the deviations were obtained by comparing with solutions for
the continuous model as calculated with the equations given by
Miyauchi and Vermeulen (5). The variations of the deviations in
the outlet and averaged X-phase concentrations right after the inlet
for case II are of order N72, whereas the unaveraged deviation at
the inlet vary as N7

For case I with side inlets, the deviations from the profile
tabulated by Wilburn (6) were obtained for various total number of
cells with 10% in each end section and zero holdup for the inlet
feed cells. The deviation in the X-phase concentration at the Y-
phase outlet (Z = 0) end varies as N~'. The average values are the
same, so no improvement is realized by averaging. The variation
of the average X-phase concentration given by Eq. (23) at the
X-phase input point (or the mth cell) is also indicated. The leveling
off of the deviation curves at higher N may be attributed to roundoft
in the numerical calculations.

Calculations were made for the straightforward difference
equations with mth and nth nodal conditions specified by Eq. (16).
The results were not so good as those for the backflow-cell model.
Also, calculations were made for the cell model with equal number
of cells in each of the three sections. For the same number of total
cells, the agreement was not so good as that obtained by pro-
portioning the number of cells in a section according to the rela-
tive length of the section.
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FIG. 7. Effect of cell size upon X-phase deviations. Case II: (A) Xy; (B)
unaveraged Xy; (C) averaged X,,. Case I: (D) averaged X,; (E) averaged X,

CONCLUSION

Equations have been derived for the backflow-cell model of a
two-phase countercurrent operation with nonuniform mixing and
volumetric fraction of phases along the axis and with nonlinear
interphase solute transfer. By writing alternate material-balance
equations for the X and Y phases in each cell, the resulting set of
equations forms a quidiagonal system for the linear equilibrium
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case. The dominant diagonal of the quidiagonal coefficient matrix
ensures that Gaussian elimination will be an efficient solution
process. For the case of a nonlinear (quadratic) equilibrium rela-
tion, iterative methods including direct iteration and Newton-
Raphson techniques were tried. The application of the Newton-
Raphson method to the quidiagonal system resulted in the fastest
and most efficient solution procedure for the nonlinear cases.

Concentration profiles in the X and Y phases have been compared
to those of the continuous-diffusion model for the linear case with
uniform mixing when ¢ = Np.. The concentration at the point
between two cells obtained as the average of the adjacent cells
gives very good agreement with the continuous model. For a
system with inlets and outlets at the ends, the average concentra-
tions converge to those of the diffusion model as N~2 Such a rate
of convergence was not attainable for a system with side inlets,
owing to the difficulty in expressing the inlet boundary conditions
with the same accuracy and order of approximation as for interior
points.

The effects of the distribution of the phases and the curva-
ture of the equilibrium curve upon the concentration profiles and
efficiency of the operation were demonstrated. For the case with
side inlets (case I), pileup of the X phase in the raffinate (or Y
phase) end did not have a marked effect upon the efficiency. How-
ever, the curvature of the equilibrium line can greatly influence
the shape of the profiles and efficiency of the operation.
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List of Symbols

a,b,c,d.er in form a;;; elements of quidiagonal coeflicient A
matrix
a  interfacial area per unit volume of system, ecm?/ce
ay interfacial area per unit volume in the kth cell
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a,b,c,
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constants in holdup expression for €

cross-sectional area of column, c¢m?

quidiagonal coefficient matrix from combined X
and Y equations

tridiagonal coeflicient matrix from Xand Y equations
curvature of equilibrium line

diagonal interaction matrix between X and Y
matrices

concentration of solute in the ith phase, g-moles/cc
inlet concentration of solute in the ith phase
reduced concentration, ¢;/c%

reduced inlet concentration, ¢¥/c!

column vectors of input constants for X and Y
matrices

axial dispersion coefficient in the ith phase, cm?*/cc
effective axial dispersion coeflicient; E{, cm?*/sec
backflow rate of the ith phase from the kth cell,
cefsec

superficial volumetric flow rate of ith phase per unit
cross section of system ce/sec

dimensionless length of a cell in region R, Zx/Ny
over-all mass-transfer coefficient based on X phase,
cm/sec

actual length of central section of system, cm

actual lengths of sections below X inlet and above
Y inlet, 1'espectively, cm

slope of equilibrium relationship; cell with X-phase
feed

cell with Y-phase feed

total number of cells in system including those in
the end sections

number of cells in a region R

number of transfer units, k,.aL/F,

dimensionless Peclet number for the ith phase,
w,L/E]

local Peclet number in ith phase and in kth cell or
region from kh to (k + 1)h

coeflicient element either 1 for or 0 for no net flow
of the ith phase in aregion
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6 ,6"

AX,AY
Ay

€;

€k
M.i3M2.i

mass transfer at position z; ko.a(c, — ¢7), g-moles/
ce-sec

dimensionless mass transfer at Z

intercept of equilibrium expression

mass transfer between X and Y phases in kth cell
intercept of dimensionless equilibrium expression
element of R for ith phase and kth cell material
balance

constant column vector from combined X and Y
equations

linear velocity, Fi/Ae;, cm/sec

alternating X and Y profile column vector for com-
bined XY case

total volume of system

volume of X and Y phases in kth cell

volume of ith phase in kth cell

refers to dispersed phase; generalized solute con-
centration in X phase

coefficient term which includes past value of Y,
refers to continuous phase; generalized solute con-
centration in Y phase

generalized solute concentration in Y-phase feed
actual length dimension of system from X-phase
input point

dimensionless position from X-phase input point,
z/L

over-all dimensionless position from Y output end,
(Z+8)(1+8Y+8)

total dimensionless length of a region R
dimensionless rate constant for mass transfer in
kth cell, N,,V,/V

backflow ratio from kth cell in ith phase, f;/F;
dimensionless lengths of end sections, L7/L and
L*/L

difference in X and Y for two consecutive iterations
deviation in arbitrary variable y

fraction of void volume occupied by ith phase
fraction of ith phase in kth cell

difference parameters defined by Eq. (12)
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A dimensionless capacity ratio, mF,/F,
bin “phi” number for the ith phase in section R, 2N,/

[Zle(Pi + 28;)]

% dimensionless curvature of equilibrium relation,
(bey)/m?

Subscripts
; phase, X or Y
k arbitrary cell

" X-phase feed cell

N Y-phase feed cell

R region I, 1I, or III
ry  XorY phase

Superscripts
~  average or assumed variable
0 feed condition
# equilibrium
N

end section below X inlet
end section above Y inlet
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