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SEPARATION SCIENCE, 1 (6), 677-700 (1966) 

The Backflow-Cell Model for Continuous 
Two-Phase Nonlinear Mass-Transfer Operations 
Including Nonlinear Axial Holdup and Mixing Eft: ects 

C. V. McSWAIN and L. D. DURBIN 
DEPARTMENT OF CHEMICAL ENGINEERING, 

TEXAS A & M UNIVERSITY, 

COLLEGE STATION. TEXAS 

Summary 
The backflow-cell model is applied to countercurrent two-phase flow 
processes with exchange of a single solute. The effects of nonuniform axial 
holdup of the phases and nonlinear equilibrium are considered. Efficient 
matrix methods of solving the model equations for the array of cell concen- 
trations in each phase are developed. These profiles are compared to those 
of the diffusion model for some linear cases, and methods of smoothing 
them are discussed. 

Methods of determining the effect of imperfect axial mixing on 
the solute concentration profile and efficiency of continuous two- 
phase operations have been based mainly upon the diffusion model 
(1-6). Miyauchi and Venneulen (13) and Sleicher (4 )  obtained 
solutions when the dispersion coefficient and volumetric fraction 
(holdup) of phases do not vary with axial position along a process 
with inlet and withdrawal points at the ends. Wilburn (6) derived 
the basic differential equations of a more general type of operation 
with inlet feed points between the outlets at the ends and with 
nonuniform distribution of the phases. These conditions are typical 
of extractors such as packed, spray, or pulse columns. However, 
solutions (6) are given only for the case of uniform holdup. The 
presence of the stagnant volumes at the ends of the extractor has 
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678 C. V. McSWAlN AND L. D. DURBIN 

a great effect on the solute concentration profile and significantly 
increases the efficiency of the operation. 

Miyauchi and Vermeulen (7) applied the discrete backflow-cell 
model to continuous two-phase flow operations. They gave the 
basic difference equations for this model with uniform mixing and 
volumetric fraction of phases and with inlets and outlets at the 
ends. They derived certain criteria for coinparison with the con- 
tinuous-diffusion model, although they did not indicate solutions 
for the model. However, the solutions of the difference equ, '1 t '  ions 
are given by Sleicher (8) for an extraction train of mixer-settlers 
with entrainment. These apply for the case with uniform back- 
mixing and holdup and a linear equilibrium relationship. 

with side inlets is shown scheinatically by Fig. 1. Finite-difference 
solutions for uniform mixing and holdup in a configuration of this 
type may be obtained in a nianner analogous to that given by  Wil- 
burn (6) for the continuous-diffusion case. As each cell corresponds 
to an increment of length along the extractor, a sufficiently large 
number of cells would be required to approximate the diffusion 
model. Invariably, digital computation would be employed. If this 
is the case, matrix algebra may be used directly with the added 
advantage that conditions of nonuniform axial mixing and holdup 
can easily be included. Also, iterative matrix methods allow cases 
with nonlinear equilibrium relationships to be solved. 

The purpose of this work is to describe useful and efficient 
matrix methods of solving for the solute concentration profile in a 
two-phase countercurrent extractor with side inlets. The equations 
for the backflow-cell model are given for nonuniform axial mixing, 
nonuniform axial holdup, and nonlinear equilibrium between 
phases. Iterative techniques of solving the nonlinear set of equa- 
tions which result from a nonlinear (quadratic) equilibrium rela- 
tionship are discussed and compared with respect to speed of 
convergence and utility. For uniform and linear conditions, com- 
parisons are made with the results of the diffusion model. The 
convergence of the cell model with increasing number of cells 
to the continuous model is investigated. Methods of smoothing 
the staircase type of profile of cell concentrations are studied. 
The effects of nonuniform holdup and curvature of the equilibrium 
curve are indicated for a typical system. 

The backflow-cell model of the more general type of oper. '1 t '  1011 
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The backflow-cell model of a two-phase countercurrent opera- 
tion with side inlets is shown schematically by Fig. 1. The model 
consists of N cells or stages which are further divided into dis- 
persed X (rich) and continuous Y (lean) phase holdups with an 
interphase mass (solute) transfer vector between them. Between 
each individual pair of X- or Y-phase cells there is a recirculation 
flow of that phase. The average net volumetric flows of the X and 
Y phases are denoted by F ,  and F,, respectively. It is assumed 
that the solvent and raffinate are immiscible so that F ,  and F ,  do 
not change from stage to stage. The directions of these flows are 
countercurrent to each other, as indicated in Fig. 1. Although the 
countercurrent operation is considered here, the analysis can 
readily be applied to cocurrent systems in the same manner. Al- 
though Fig. l does not indicate this, the backflow rate from the kth 
cell is denoted by f,,k and fu,k for the X and Y phases, respectively. 
Conditions of nonuniform axial mixing can be accounted for by 
varying these individual backflow rates from cell to cell along the 
axis of the system. The X-phase feed with solute concentration 
c: is introduced to the mth cell, and the Y-phase feed with solute 
concentration cg is introduced to the nth cell. Each cell is assumed 
to be perfectly mixed. Coalescence and redispersion of the dis- 
persed phase are so rapid that the solute concentration is uniform 
throughout the cell. It is not necessary to stipulate that the dis- 
persed droplets be separated into a homogeneous phase before 
entering the next cell. 

Model Equations 

A material balance for the solute may be made about each cell 
of the X and Y phases. The system studied here assumes steady- 
state operation with constant input flows and inlet solute concen- 
trations for each phase. Typical solute material-balance equations 
for the kth cell in the midsection may be written 
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THE BACKFLOW-CELL MODEL 68 1 

The equations are of the same form in the end sections except 
that F, = 0 for k < m and F, = 0 for k > n. 

The form of the mass-transfer vector is based upon the X phase 
resistance and interfacial area u,,. of the dispersed X phase in the 
total combined volume Vk of the kth cell. Thus 

A quadratic form of the equilibrium line in the form 

c," = q' + mc, + bc; (3) 

will be used here. Other forins of the equilibrium line may be used 
with techniques that are discussed. 

The material-balance equations may be put in dimensionless 
form by dividing through by F,c$ and defining concentration 
ratios as C, = c,lc:, C, = c,lc$, and C: = c",& More general dimen- 
sionless concentrations may be used in the form 

These are related to the generalized concentration variables X' 
and Y', given by Miyauchi and Verineulen (7) as 

Y - YO y'=-  
1 - Y O  

x - YO X' =--- 
1 - YO (5) 

For the case of linear equilibrium studied by them, it was not 
necessary to specify YO, or it could be taken to be zero. For the 
nonlinear case treated here, the dimensionless curvature x of the 
equilibrium line is specified. In this case YO must be specified, as 
it affects the results. 

The equations which apply to the end cells and those at the 
feed points for the X and Y phases require special consideration. 
Here the zeroth, mth, nth, and (N + 1)th cells are assumed to be of 
negligible volume, so mass transfer does not occur. The solute 
material-balance equations for the three regions may be written 
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THE BACKFLOW-CELL MODEL 683 

to the axial dimension. This corresponds to a cell of zero holdup. 
However, in actual columns a mixing zone at the point of feed 
input would be evident. By assigning finite volumes to the mth and 
nth cells, the backflow-cell model can be made to more nearly 
simulate this situation. 

VARIABLE AXIAL CONDITIONS 

The backflow-cell model equations are written to include cases 
with mixing conditions and/or volumetric fraction of each phase 
varying with axial position. 

The condition of variable holdup or volumetric fraction can be 
included by varying the relative volumes, v x , k  and VyPk, respec- 
tively, for the X and Y phases in each cell. This affects the inter- 
facial area of the dispersed X phase in the total volume element 
v k .  This may be expressed 

(7)  

where a is the interfacial area for an average E ,  over the entire 
system. The variable a k  is included in the mass-transfer vector 
4 k  for each cell and is reflected in the specification of the array of 
transfer constants (Yk for 1 I k I N .  

Variable backmixing conditions are accounted for by variations 
in px and pu with respect to cell number. To determine the effect 
of variable diffusivity EI and volumetric fraction ei upon the manner 
in which fI and a vary along the system, central difference approxi- 
mations to the diffusion-model equation are developed. The Dam- 
kohler (9) type of equation for transfer from the ith phase as given 
by Wilburn (6) is used as the starting point. Thus for unit cross- 
sectional area, 

(8) 
Now, El and ei are allowed to vary with axial dimension z ,  and are 
grouped together in the first term as Ei = E ~ E ~ .  However, the bulk 
volumetric flow rate per unit cross-sectional area of the system is 
assumed to be invariant along the axis for each phase. Thus the 
term uiei - FJA remains constant. For the end section, where there 
is no net flow Fi ,  the middle term is nonexistent. 

Equation (8) may be placed in dimensionless variables Ci = 

-div(-EiEi grad ci) - div(uiEici) - 4 = 0 
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684 C. V. McSWAlN AND 1. D. DURBIN 

Ci/C$ so that 

where p i  is unity with and zero without net flow and 

9 = -  (C,  - C,*) (10) Fi 
Also, p i  is positive for X phase flow and negative for countercur- 
rent Y phase flow. The central difference approxiination to this 
equation at 2 = kh from 2 = 0 in a region R of total length Z R  which 
is divided into Nn increments of lengths h, = AZR may be written 
in the form 

The correspondence with the cell-model equation (1) for region R 
is realized when the p’s are specified as follows: 

At the feed inlet points differences between concentrations in 
adjacent cells are required in the boundary conditions. Conse- 
quently, ambiguous definitions of p’s at these points result. How- 
ever, the specification of interior p’s is used to maintain over-all 
flow balance. 

REGIONS WITH UNIFORM MIXING 

With a constant Peclet number for a phase in any region R ,  a 
relative measure of backmixing in this phase is defined by its 
“phi” number, 4,& or +Y,R. In this case the central difference 
approximation to the diffusion-model equation agrees with the 
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THE BACKFLOW-CELL MODEL 685 

backflow-cell model when NPe,, = +x,H and NPe,# = for that 
region R. For the extractor system with end sections as shown by 
Fig. 2 and with constant Peclet numbers specified for each section, 
the definition of the P ’ s  takes the form: 

Region R = I, 11, or 111: 

In order to have the flow balance for each cell, these conditions 
must apply at the feed input points, the mth and nth cells. 

If straightforward finite-difference approximations to the d i h -  
sion model are made, then central differences of the second-order 
equation may be used at the interior points and are of the same form 
as the cell-model equations with the p’s set by Eq. (14). However, 
at the feed input points and at the ends, the spacewise concentra- 
tion derivatives in the boundaiy conditions (6) are approximated 
by differences between values at adjacent points. This corresponds 
to concentration differences between adjacent cells. From this 
viewpoint the input boundary conditions for the difference equa- 
tions are in the same form as the cell-model equations for the 
mth and nth cells, except that the P ’ s  are defined as follows: 

X-phase input: P,,, = (~~NPe,x)F’ P Y , m - i  = (hNPe,v)il 

P l . m + t  = (hNPe,x)<’ P8.m = (hNPe,uh! - 1 
(15) 

Y-phase input: Pltn = (hNPe,u)ii’ - 1 Pu,n-r = (hNpe,g)ii’ 

Ps,n+l= (hNPe.Jii’ Pu.n = (@JPe,u)iil 

Several cases which result in variable P’s and a’s must be recog- 
nized. These include (a) constant E ,  and variable Ei and (b) constant 
E (  and variable E,. Specifications of the a’s and P ’ s  are made by 
Eqs. (7) and (13) for the particular phase and section. Once the 
arrays of P’s and a ’s  have been specified, the methods of solution 
presented later are applicable to any of the cases. The third case 
with variable holdup E ,  and constant E is the one considered here. 
For this case the p’s remain constant from cell to cell and the a’s 
vary as E ,  varies with position. This implies that E :  varies in pro- 
portion to the velocity at a point, ut = Fi/Aei, so that the product 
Ei = ciEI remains constant. The variation of EI with ui must be 
known for the particular type of system and operating conditions 
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686 C. V. McSWAlN AND 1. D. DURBIN 

under study before the array of pi's can be specified. However, 
experimental determinations (10) of eddy diffusivities for liquids 
in packed beds indicate that the Peclet number remains fairly 
constant over a wide range of flow rates. Thus the assumption of 
the diffusivity EI varying in proportion to the velocity ui is justified 
for a preliminary investigation. 

Experimental deterininations of the manner in which the volu- 
metric fractions or holdups of the phases vary with position have 
not been made. As noted by Wilburn (6 ) ,  efficient operation may 
be near flooding so that the dispersed phase piles up in the section 
about its point of input. An arbitrary functional form of the dis- 
persed-phase fractional holdup E ,  is employed here to describe 
this situation. This equation is 

(16) 
and is such that E, = 0 at the Y-phase outlet end. The constants u, 
b, and c were determined by an iterative digital search procedure 
for specified values of the peak height E,~, its position, and an aver- 
age E, for the entire system. Representative curves were generated 
for the system with end sections, each of which is 10% of the mid- 
section. Each curve was specified with its peak at the X-phase 
inlet point and with a total area underneath them of one half (or 
E ,  = +), as determined by trapezoidal integration with 481 points 
over the entire length of the system. For this case, the values of 
the constants u,  b, and c are given in Table 1 for different peak 
heights . 

E, = a26 exp (-bZ,) 

TABLE 1 

Holdup Distribution Function Parameters 
(Peak at X-phase inlet; each end section with 10% of volume of midsection) 

Peak Calc. 
height, E,,, areaa 

0.55 0.5004 
0.60 0.4997 
0.70 0.4994 
0.80 0.5004 
0.90 0.5005 
0.95 0.4991 

f1 

0.6050 
0.7260 
1.0155 
1.3790 
1 A433 
2.1306 

b C 

0.3281 0.02734 
0.6563 0.05469 
1.2813 0.1068 
1.8750 0.1562 
2.4688 0.2057 
2.7813 0.2318 

" Trapezoidal integration of 481 points over range -0.1 5 Z I 1 . 1 .  
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THE BACKFLOW-CELL MODEL 687 

METHODS OF SOLUTION 

The generalized set of equations (6) constitutes the mathe- 
matical description of the backflow-cell model for the conditions 
noted. Efficient methods of solving these equations are next 
considered. Solutions were obtained with the University’s digital 
computer. 

The zeroth and ( N  + 1)th cell equations can be absorbed into 
those for the first and Nth cells, respectively. The cell equations 
for the X and Y phases are written alternately, beginning with the 
first through the Nth cells. Each equation is written with alternating 
X and Y terms. The set of 2N equations can be written as a quidiago- 
nal matrix system in the configuration 

or in symbolic form as 
A U i = f i  
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688 C. V. McSWAlN AND 1. D. DURBIN 

The exceptions to these occur at the end and feed inlet cells, 
where a,,, = bx,l = u , , ~  = = d,,N = eu,,v= 0, and with zero values 
for P2.l in cX,1; Pl.o in ~ ~ ~ 1 ;  Ps..v+I in cs..v; P u , ,  in c,.N; am in C x m  and 
cUsnt; and a, in cs., and c # , ~ .  

LINEAR EQUILIBRIUM 

When x = 0, the equations describe the system with a linear 
equilibrium relationship. In this case the elements of the constant 
column vector R are defined for 1 c k 6 N as 

T,,k = Tu,k = 0 but with = -1 and = -Yo (20) 

The main diagonal of the quidiagonal coefficient matrix is domi- 
nant with absolute value greater than that of any off-diagonal 
element. Thus the solution of the matrix equation (17) can be 
carried out efficiently by a Gaussian elimination procedure ( 1  1 ) .  
Recursive relationships for this scheme are given by Conte and 
Dames (12), and these were coded in double precision arithmetic 
(16 digits) for the digital method of solution. 

The combined XY matrix method outlined above proved to be 
the simplest and most direct method of solution as well as the best 
as far as accuracy and roundoff are concerned. For each solution 
an over-all material balance indicates the degree of confidence 
to be placed on the results. Solutions were obtained by this direct 
method to very severe and difficult cases, e.g., a large number of 
cells with large p's and small a's. 

If the X and Y equations are written separately, two siinultaneous 
tridiagonal matrix systems result, in the form 

where A, and A", are tridiagonal coefficient matrices, B, and B, 
are diagonal interaction matrices, and d, and d, are column vec- 
tors of input constants. The elements of the matrices are apparent 
from the set of equations (6). The first equation may be solved for 
E = col(Y,, YB, . . . , Y,) and substituted into the second equation 
to yield a quidiagonal system of N equations in terms of 3 = col(X1, 
XI, . . . , XLv).  This may be solved to obtain the X's as before. 
These are substituted back into the first equation which may be 
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THE BACKFLOW-CELL MODEL 689 

solved for the Y’s. Difficulties were experienced with this method 
for a large value of N ,  large p’s and small a’s. With uniform holdup 
for each cell, ak = N J N ,  so that values of (Yk can become quite 
small. In the simultaneous method of solution, it is necessary to 
divide by these a ’ s  and difficulties are to be expected. Also, the 
condition of the quidiagonal matrix for the X equations is not known 
until it is calculated. Conditions such as two or more dominant 
diagonals may develop which make the Gaussian elimination 
procedure ineffective. 

It should also be noted that if material-balance envelopes en- 
close the X outlet end and cut between each pair of cells, then 
after the Y’s are eliminated, a set of difference equations in the X’s  
results. Each equation is a locally third-order difference with de- 
pendence upon the outlet (Nth cell) conditions. For uniform and 
linear conditions, the classical solution for the case with inlets and 
outlets at the ends of the system is the sum of particular and 
complementary solutions specified by the three characteristic. 
roots and the boundary conditions. This is the form obtained by 
Sleicher (8). The matrix system for this case involves a quatra- 
diagonal coefficient matrix with the last (Nth) column filled. Un- 
fortunately, two dominant diagonals occur in the coefficient 
matrix and difficulties with the Gaussian elimination method of 
solution were experienced. 

linear Results 

Solutions were obtained for the four different system configura- 
tions given by Wilburn (6) which are referred to as type I, 11, 111, 
and IV with two, one X inlet, one Y inlet, and no end sections, 
respectively. Analytical solutions of the diffusion model for the 
type IV system are given by Miyauchi and Vermeulen (5). These 
were programmed so that comparisons could be made with the 
cell model. For cases with end sections, comparisons are made 
with the profiles given by Wilburn. In particular, one case consist- 
ing of a column with two end sections each of which is 10% of the 
midsection, with Peclet number NPe = 8 in all sections, with No,= 4, 
and with A = 0.5 will be referred to as case I here. Also for identifi- 
cation purposes, case I1 refers to a type IV (Miyauchi and Ver- 
meulen) system with the same parameters. 

Some typical profiles for case I are shown in Figs. 3 and 4. The 
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690 C. V. McSWAlN AND L. D. DURBIN 

2 
FIG. 3. Typical X-phase concentration profiles for variations of case I. 
(A) continuous; (B) 2-20-2 cells; 20-200-20 cells with ( C )  varialde holdup, 
en, = 0.9, c i  = 0.5; or with quadratic equilibrium, Y" = 0.0; (U) x = 5; and 

(E) x = - 5 .  

A curves are the X and Y profiles for the continuous-diffusion model 
a s  given by Wilburn. The B or stair-step curves show the X and Y 
profile in the backflow-cell model of 24 cells with 20 in the middle 
and 2 in each end section and with uniform values of ps and PI, 
set by $x = $u = 8. Average cell values are indicated. These are 
determined by averaging the concentrations of adjacent cells, a s  

x, = +x, + ix,,, 7,-1 = + iY ,  (22)  
An average at the point of feed input or cell of zero holdup was 
obtained by averaging the three values which occur here; for 
example, at the X-phase input or mth cell, 

ZX, = +xm- x, + +Xn,+, (23)  
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0.: 

0.4 

0.2 

> 

0.2 

0. I 

0s 

I I I I I I I I I I I 

0 AVERAGE CELL 
+ Z E R O  HOLDUP F E E D  C E L L  

VALUES 

2 
FIG. 4. Typical Y-phase concentration profiles for variations of case I. (A) 
continuous; (B) 2-20-2 cells; 20-200-20 cells with (C) variable holdup, 
czu = 0.9, 2, = 0.5; or with quadratic equilibrium, Y" = 0.0, (D) x = 5 ;  and 

(E) x = -5.  

As noted for the case of 24 cells, the average cell values agree very 
well with the continuous profile. 

To show the effects of variable holdup, the C profiles are shown 
for case I with a 20-200-20 cell configuration for an over-all or aver- 
age holdup of 3 but with a distribution such that the peak height 
ESP - - 0.9 at the X-phase input point. The X and Y profiles drop 
below those of the uniform holdup case at the X inlet end, but the 
X-phase curve goes above that of the previous case at its outlet 
end. A number of profiles were calculated for case I with different 
peak heights. The concentration values at the ends are plotted 
against peak height in Fig. 5. Thus the efficiency of the operation 
is reduced as the X phase piles up in the raffinate-disengaging 
section with total X and Y holdups remaining the same. 
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PEAK HEIGHT, Qxp 
FIG. 5. Variation of outlet conditions with peak height ezp of the X-phase 

holdup distribution. Case I with 20-200-20 backflow cells. 

Nonlinear Equilibrium 

Two methods of solution were employed for cases with nonlinear 
equilibria. These are (a) the direct and (b) the Newton-Raphson 
iterative methods, The nonlinear case considered here is that of 
a quadratic equilibrium line. The methods are applicable to higher- 
order and other forms of this relationship. Thus we consider the 
set of equations (6) for the backflow-cell model with given x and Yo. 

In the direct iteration process, solutions { X , }  and {Y,} are first 
obtained for the linear case with x = 0. These are used as the 
assumed starting trial profile, {X,} and {Y,}. The assumed values 
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THE BACKFLOW-CELL MODEL 693 

of Y k  are substituted as yk = Yk in the C#,k and dX,,( coefficients for 
the set of equations (19). Next, new values of X I ,  and Yk are calcu- 
lated from the quidiagonal matrix system, Eq. (18). These become 
the new assumed profiles, {R} and { i i k } ,  and the process is re- 
peated until convergence is obtained. Convergence to the solution 
was considered to have occurred when the absolute value of the 
difference Ak between the right and left sides of each equation in 
the system was less than Starting with the linear profile for 
case I, the direct iteration method converged within 4 to 12 itera- 
tions with the number increasing as 1x1 increased. 

With the Newton-Raphson iteration scheme, the functions of 
solute concentrations, f ( & )  or f ( Y k ) ,  are expanded to first order 
in a Taylor’s series about the value of the function at a previously 
assumed or determined estimate, & or yk.  For the quadratic system 
these functions include: 

x k  = x k  + A x k  Y k  = Y k  + A Y k  Yi = 7, -k 2 Y k A Y k  (24) 
These are substituted into the solute material-balance equations 
(6), and the linearized equations are arranged as a quidiagonal 
matrix system in the form of Eq. (18). However, in this case 0 = 
col(AX,, A Y , ,  A X 2 ,  . , . , A X N ,  AYN) ,  so a solution in terms of the 
deviation vectors { A & }  and {AY,}  is obtained. The elements of 
the quidiagonal coefficient matrix A are as given by the set of 
equations (19) with y k  = 27,. The elements of the constant column 
vector l? now include terms in the assumed known estimates, 
{ x k }  and { y k } .  The elements alternate a s  shown below for the kth 
cell in the general form: 

Tx,k = e , k  - (ux ,kxk- i  -k bx.kyk-1 C x , k x k  + d x . k Y  + es.ttxk+i) 
(25) 

with due allowance for the end conditions and with y k  = Y in the 
coefficient terms. Here, the previous input elements are noted as 
r:,k = r!,k = 0 except that r:,,,, = -1 and ri,m = -Yo. 

The method of solution with the Newton-Raphson procedure 
involves assuming initial concentration profiles {X,} and { Y k } ,  
substituting these into the matrix equation (18), and solving this 
for the deviation profiles { A X , }  and { A Y k } ,  which are added to 
the assumed estimates according to Eq. (24) to give new estimates 
of the concentrations { x k }  and {Yk}. These new estimates become 

rU.k = e . k  - ( u u , k Y k - l  + b,JiXk + c u , k y k  + dU.kxk+l + eu.kyk+l) 
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694 C. V. McSWAlN AND 1. D. DURBIN 

the new assumed profiles and the process is repeated until converg- 
ence is obtained. The starting profiles were obtained as the linear 
solution with x = 0. Again the iteration process was stopped when 
the absolute deviation Ak between the sides of each material- 
balance equation was less than lo+. With the quadratic equi- 
librium relation, the Newton-Raphson method did not fail to con- 
verge. I t  usually required 3 to 4 iterations for convergence to be 
obtained after starting with the linear profile. 

Nonlinear Results 

Solution profiles were generated for case I with a 20-200-20 cell 
configuration with Yo = 0 and for various values of the curvature 
x. Profiles are shown as the D and E curves on Figs. 3 and 4 for 
x’s of +5 and -5, respectively. These profiles deviate markedly 
from those of the linear case. The degrees of variation in end-cell 
conditions with curvature are indicated by Fig. 6. As the curv. ‘1 t ure 
x of the equilibrium relation decreases and goes negative, the 
efficiency of the operation is enhanced. 

> 

0 
X 

a 

0.8 - - 

- 

0.2 - 

I I I I I I 
0 2 4 6 a 10 0.0’ -4 -i 
CURVATURE, X 

FIG. 6. Variation of outlet conditions with the curvature x of a quudratic 
equilibrium line. Case I with 20-200-20 backflow cells and Y” = 0.0. 
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THE BACKFLOW-CELL MODEL 695 

The Effect of Cell Size 

At interior points away from the inlet and outlet boundaries, 
the backflow-cell model is a central difference approximation to 
the diffusion-model equations when the p’s are set according to 
Eq. (15). The load difference approximation is valid to order h2 
or O(h*). Baldwin and Durbin (13) showed that the outlet concentra- 
tion from the backflow-cell model of an axially mixed first-order 
reactor converged to that of the diffusion model as O(h2) or OW2) .  
Internal cell concentrations converged only as O(h), whereas 
average cell concentrations converged as O(h2). Similar results 
were obtained for the extraction system with inlet and outlets 
on the ends. The results are shown in Fig. 7. Here the deviations 
Ay between the cell and continuous profiles at different points are 
plotted against the total number N of cells in the system. For case 
11, the deviations were obtained by comparing with solutions for 
the continuous model as calculated with the equations given by 
Miyauchi and Vermeulen (5). The variations of the deviations in 
the outlet and averaged X-phase concentrations right after the inlet 
for case I1 are of order N-2,  whereas the unaveraged deviation at 
the inlet vary as N-I. 

For case I with side inlets, the deviations from the profile 
tabulated by Wilburn (6) were obtained for various total number of 
cells with 10% in each end section and zero holdup for the inlet 
feed cells. The deviation in the X-phase concentration at the Y- 
phase outlet (2 = O )  end varies as N-’. The average values are the 
same, so no improvement is realized by averaging. The variation 
of the average X-phase concentration given by Eq. (23) at the 
X-phase input point (or the mth cell) is also indicated. The leveling 
off of the deviation curves at higher N may be attributed to roundoff 
in the numerical calculations. 

Calculations were made for the straightforward difference 
equations with mth and nth nodal conditions specified by Eq. (16). 
The results were not so good as those for the backflow-cell model. 
Also, calculations were made for the cell model with equal number 
of cells in each of the three sections. For the same number of total 
cells, the agreement was not so good as that obtained by pro- 
portioning the number of cells in a section according to the rela- 
tive length of the section. 
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696 C. V. McSWAlN AND 1. D. DURBIN 

TOTAL NUMBER OF CELLS, N 
FIG. 7. Effect of cell size upon X-phase deviations. Case 11: (A) X , , ;  (B) 
uiiaveraged Xu; (C) averaged X,,. Case I:  (D) averaged X,,;  (E) averaged X,". 

CONCLUSION 

Equations have been derived for the backflow-cell model of a 
two-phase countercurrent operation with nonuniform mixing and 
volumetric fraction of phases along the axis and with nonlinear 
interphase solute transfer. By writing alternate material-balance 
equations for the X and Y phases in each cell, the resulting set of 
equations forms a quidiagonal system for the linear equilibrium 
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THE BACKFLOW-CELL MODEL 697 

case. The dominant diagonal of the quidiagonal coefficient matrix 
ensures that Gaussian elimination will be an efficient solution 
process. For the case of a nonlinear (quadratic) equilibrium rela- 
tion, iterative methods including direct iteration and Newton- 
Raphson techniques were tried. The application of the Newton- 
Raphson method to the quidiagonal system resulted in the fastest 
and most efficient solution procedure for the nonlinear cases. 

Concentration profiles in the X and Y phases have been compared 
to those of the continuous-diffusion model for the linear case with 
uniform mixing when 4 = Npe. The concentration at the point 
between two cells obtained as the average of the adjacent cells 
gives very good agreement with the continuous model. For a 
system with inlets and outlets at the ends, the average concentra- 
tions converge to those of the diffusion model as N-'. Such a rate 
of convergence was not attainable for a system with side inlets, 
owing to the difficulty in expressing the inlet boundary conditions 
with the same accuracy and order of approximation as for interior 
points. 

The effects of the distribution of the phases and the curva- 
ture of the equilibrium curve upon the concentration profiles and 
efficiency of the operation were demonstrated. For the case with 
side inlets (case I) ,  pileup of the X phase in the raffinate (or Y 
phase) end did not have a marked effect upon the efficiency. How- 
ever, the curvature of the equilibrium line can greatly influence 
the shape of the profiles and efficiency of the operation. 
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List of Symbols 

u,b,c,d,e,r 

u 
u k  

in form a i ,k ;  elements of quidiagonal coefficient A 
matrix 
interfacial area per unit volume of system, cin'lcc 
interfacial area per unit volume in the kth cell 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
4
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



698 C. V. McSWAlN AND L. D. DURBIN 

u,b,c, 

A 
A 

E :  
Ei 

fi.k 

Fi 

L 
L-,L+ 

m 

n 
N 

constants in holdup expression for E 

cross-sectional area of column, cin' 
quidiagonal coefficient matrix from combined X 
and Y equations 
tridiagonal coefficient matrix from X and Y equations 
curvature of equilibrium line 
dingoiial interaction matrix between X and Y 
matrices 
concentration of solute in the ith phase, g-moleslcc 
inlet concentration of solute in the ith phase 
reduced concentration, cilc$ 
reduced inlet concentration, cylc? 
column vectors of input constants for X and Y 
matrices 
axial dispersion coefficient in tlie ith phase, cni2/cc 
effective axial dispersion coefficient; eiEI, cin2/sec 
backflow rate of tlie ith phase from the kth cell, 
cclsec 
superficial volumetric flow rate of it11 phase per unit 
cross section of system cclsec 
dimensionless length of a cell i n  region R, ZJNH 
over-all mass-transfer coefficient based on X phase, 
cm/sec 
actual length of central section of system, cm 
actual lengths of sections below X inlet and al)ove 
Y inlet, respectively, cm 
slope of equilibrium relationship; cell with X-phase 
feed 
cell with Y-phase feed 
total number of cells in system including those in 
the end sections 
nuinber of cells in a region R 
number of transfer units, kO,aL/F, 
dimensionless Peclet number for the ith phase, 

local Peclet number in itli phase and in kth cell or 
region from kh to (k + 1)h 
coefficient element either 1 for or 0 for no net flow 
of the ith phase in a region 

UiLIE: 
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mass transfer at position z ;  kOsu(c, - us”), g-molesl 

dimensionless inass transfer at Z 
intercept of equilibrium expression 
mass transfer between X and Y phases in kth cell 
intercept of dimensionless equilibrium expression 
element of R for ith phase and kth cell material 
balance 
constant column vector from combined X and Y 
equations 
linear velocity, Fi/Aei, cmlsec 
alternating X and Y profile column vector for com- 
bined XY case 
total volume of system 
volume o f X  and Y phases in  kth cell 
volume of ith phase in kth cell 
refers to dispersed phase; generalized solute con- 
centration in X phase 
coefficient term which includes past value of Yk 
refers to continuous phase; generalized solute con- 
centration in Y phase 
generalized solute concentration in Y-phase feed 
actual length dimension of system from X-phase 
input point 
dimensionless position from X-phase input point, 
ZlL 
over-all dimensionless position from Y output end, 
( Z  + ti-)/( 1 + 6+ + 6-) 
total dirnensioiiless length of a region R 
dimensionless rate constant for mass transfer in 
kth cell, N,,,vkiv 
backflow ratio from kth cell in ith phase, f iSk /F i  
dimensionless lengths of end sections, L-/L and 
L+IL 
difference in X and Y for two consecutive iterations 
deviation in arbitrary variaMe y 
fraction of void volume occupied by ith phase 
fraction of ith phase in kth cell 
difference parameters defined by Eq. (12) 

CC-WC 
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A 
4 i . R  

X 

Subscripts 
i 

k 

Ill 

I 1  

R 

.rd 

Superscripts 
- 

0 

d; 

dimensionless capacity ratio, mF,/F,v 
“phi” number for the ith phase in section R ,  2N,J 

dimensionless curvature of equilibrium relation, 
(bc$)/m2 

[z,t (pi + W i ) l  

phase, X or Y 
arbitrary cell 
X-phase feed cell 
Y-phase feed cell 
region I, 11, or I11 
X or Y phase 

average or assumed variable 
feed condition 
equilibrium 
end section below X inlet 
end section above Y inlet 
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